今天是:

学习园地

数学建模

数学建模

当前位置: 首页 >> 学习园地 >> 数学建模 >> 正文

2006高教社杯全国大学生数学建模竞赛题目C

发布日期:2009-09-10    作者:     来源:     点击:


2006 高教社杯全国大学生数学建模竞赛题目
(请先阅读 “对论文格式的统一要求”)


C : 易拉罐 形状和尺寸的最优设计
我们只要稍加留意就会发现销量很大的饮料 ( 例如饮料量为 355 毫升的可口可乐、青岛啤酒等 ) 的饮料罐 ( 即易拉罐 ) 的形状和尺寸几乎都是一样的。看来,这并非偶然,这应该是某种意义下的最优设计。当然,对于单个的易拉罐来说,这种最优设计可以节省的钱可能是很有限的,但是如果是生产几亿,甚至几十亿个易拉罐的话,可以节约的钱就很可观了。
现在就请你们小组来研究易拉罐的形状和尺寸的最优设计问题。具体说,请你们完成以下的任务:
1. 取一个饮料量为 355 毫升的易拉罐,例如 355 毫升的可口可乐饮料罐,测量你们认为验证模型所需要的数据,例如易拉罐各部分的直径、高度,厚度等,并把数据列表加以说明;如果数据不是你们自己测量得到的,那么你们必须注明出处。
2. 设易拉罐是一个正圆柱体。什么是它的最优设计?其结果是否可以合理地说明你们所测量的易拉罐的形状和尺寸,例如说,半径和高之比,等等。
3. 易拉罐的中心纵断面如下图所示,即上面部分是一个正圆台,下面部分是一个正圆柱体。
什么是它的最优设计?其结果是否可以合理地说明你们所测量的易拉罐的形状和尺寸。
4. 利用你们对所测量的易拉罐的洞察和想象力,做出你们自己的关于易拉罐形状和尺寸的最优设计。
5. 用你们做本题以及以前学习和实践数学建模的亲身体验,写一篇短文 ( 不超过 1000 字,你们的论文中必须包括这篇短文 ) ,阐述什么是数学建模、它的关键步骤,以及难点。